
A Graph-Theoretic Approach to Protect Static and Moving
Targets from Adversaries

J.P. Dickerson G.I. Simari V.S. Subrahmanian
Department of Computer Science and UMIACS

University of Maryland
College Park, Maryland, USA

{jdicker1,gisimari,vs}@cs.umd.edu

Sarit Kraus
Department of Computer Science

Bar-Ilan University
Ramat Gan, Israel

sarit@cs.biu.ac.il

ABSTRACT
The static asset protection problem (SAP) in a road net-
work is that of allocating resources to protect vertices, given
any possible behavior by an adversary determined to attack
those assets. The dynamic asset protection (DAP) problem
is a version of SAP where the asset is following a fixed and
widely known route (e.g., a parade route) and needs to be
protected. We formalize what it means for a given alloca-
tion of resources to be “optimal” for protecting a desired set
of assets, and show that randomly allocating resources to
a single edge cut in the road network solves this problem.
Unlike SAP, we show that DAP is not only an NP-complete
problem, but that approximating DAP is also NP-hard. We
provide the GreedyDAP heuristic algorithm to solve DAP
and show experimentally that it works well in practice, using
road network data for real cities.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Intelligent agents

General Terms
Security, Algorithms

Keywords
Agent Systems, Game Theory, Adversarial Reasoning

1. INTRODUCTION
In this paper, we consider two problems related to the

protection of assets in a road network. The first problem
assumes that certain arbitrary vertices (denoting assets) in
a graph (representing the road network) must be protected
from adversaries who may be located at any subset of ver-
tices. We call this the static asset protection problem (SAP)
because the asset being protected is static. For example,
the police in a US city may be protecting a hotel where a
famous politician is staying for a few days. In contrast, the
dynamic asset protection problem (DAP, for short) consid-
ers the case where the asset being protected is moving along

Cite as: � ��	"�=/�������� �""��	�� �� ������� ��	��� 	�� �� ��� /	�=
���! ��� �� ��!	���!�]��� �� D�����!��� ���	��� 0� ��	��� Q��� �%:�	�=
	��	�� 	�� �	��� ��	%!� Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010)� 	� ��� $����
�	���	� ��!"#�	���� �%�� 	�� ��� &��!�'� �	(�)*+),� .*)*� /�������
�	�	�	� ""���
��"(����� c© .*)*� 0�����	����	
 ��%��	���� ��� �%�����%! �����! 	��
�%
��	���� �(!��! &������			!����'� �

 �����! ��!�� ���

a pre-determined route. For instance, a politician may be
traveling along a parade route and the police need to pro-
tect the entire route. In both cases, the police have limited
resources to protect the assets in question.

Both problems are intimately related to network interdic-
tion [9, 17], where an enemy attempts to traverse a graph
from a start vertex to an end vertex while an interdictor im-
pedes his progress by “breaking” edges in the graph. Work
in network interdiction has traditionally focused on stop-
ping enemy movement along some path; however, our work
is motivated by a need to protect a static asset’s position or
dynamic asset’s path.

In Section 2, we formalize the static asset protection prob-
lem and define an “optimal” deployment of resources to pro-
tect the asset in question, taking adversarial behavior into
account. Then, in Section 3, we develop a formal theoretical
model based on minimal edge cuts in graphs and show that
randomization over what we call single minimal edge cuts
yields the optimal asset protection. We propose an algo-
rithm for SAP and analyze its running time. Section 4 de-
fines the dynamic asset protection problem and shows that
this problem is NP-complete. We propose a greedy algo-
rithm that tries to quickly compute a (sub-optimal) way of
solving DAP. In Section 5, we describe the results of exper-
iments we conducted using road networks drawn from real
cities. These results show that our algorithms perform very
well on real world data for both SAP and DAP. Related
work is discussed in Section 6.

2. PRELIMINARIES
Let G = (V, E) be a graph modeling a road network,

where the set V of vertices represents locations, and the
set E of edges represents connections between these points.
We assume the existence of two sets of distinguished vertices
S, T ⊆ V such that S ∩ T = ∅; S is the set of source ver-
tices, i.e., vertices from which the adversary may start, and
T is the set of target vertices, i.e., those vertices in which
the adversary is interested. The assumption that we know
S leads to no loss of generality because if we do not, we can
simply set S to V \ T . Let Res be a set of resources to pro-
tect a target vertex — without loss of generality, we assume
that any resource in Res can be placed along any edge and
is always successful. For instance, each member of Res may
be a police unit, suitably equipped, and the deployment of
such a unit along an edge is assumed to be good enough to
foil an attack.

Definition 1. Given graph G = (V, E) and set Res of
resources, a deployment is any injective total function δ :

299

299-306

Res → E. If SD is the set of all possible deployments, a
probabilistic deployment is any probability distribution over
SD.

By requiring deployments to be total and injective, we are
implicitly assuming that |Res| ≤ |E|. When the graph and
set of resources is understood from context, we use SPD to
denote the set of all possible probabilistic deployments.

Example 1. We now show a probabilistic deployment π
over a simple road network. We consider four possible de-
ployments {δ1, δ2, δ3, δ4} over a graph G = (V, E), with all
other δ ∈ SD having probability 0. Each of these deploy-
ments has a certain probability of being used, forming our
probabilistic deployment π. As this is a simple example,
both the source set S = {s} and target set T = {t} have
cardinality 1. |Res| = 2, meaning we have two resources.

δ1, δ2

δ3

δ3

δ1

δ2

δ4

δ4

s

v0

v1

v2

v3

t

π ∈ SPD

Dep. Resources P.

δ1 (s, v0), (v1, v2) 0.15
δ2 (s, v0), (v1, v3) 0.30
δ3 (s, v1), (s, v2) 0.45
δ4 (v2, t), (v3, t) 0.10

The edges are given labels representing which deployments
place a resource on that edge. No label implies no δi ∈
{δ1, δ2, δ3, δ4} places a resource on that edge.

Definition 2. Given a graph G = (V, E), sets S ⊆ V
and T ⊆ V such that S ∩ T = ∅, and a set Res of resources,
an adversarial behavior function is any function β : SPD×
T → paths(S, T), where paths(S, T) is the set of potential
paths from s ∈ S to t ∈ T in G. We refer to the evaluation
of β w.r.t. t ∈ T and a fixed π ∈ SPD as βπ(t).

A path is a sequence of vertices 〈v0, v1, . . . , vk〉 such that
for all 0 ≤ i < k, (vi, vi+1) ∈ E. From Definition 2, the
probability that the adversary’s attack on edge e is stopped
by a probabilistic deployment π is:

P

„
Adversary stopped

at edge e given π

«
=

X
δ∈SD s.t. ∃ri∈Res,δ(ri)=e

π(δ)

where π(δ) is the probability that we will use deployment
δ to protect our asset. The above expression looks at all
deployments δ that place a resource along edge e; each of
these deployments will stop an attack involving edge e. The
sum of the probabilities of all such deployments is the prob-
ability that a given probabilistic deployment π will stop an
attack. We now define what it means for a deployment to
fail against an attack.

Definition 3. A deployment δ ∈ SD fails against a path
p ∈ paths(S, T) iff ∀e ∈ p there exists no r ∈ Res s.t. δ(r) =
e. We say p is stopped by δ if δ does not fail against p.

Intuitively, this means that none of the resources are de-
ployed at any of the edges that are part of the path chosen by

the adversary, given our probabilistic deployment π. From
this, we see the probability that an attack by the adver-
sary on any t ∈ T will not be stopped given a probabilistic
deployment π and an adversarial behavior function β is:

P (βπ(t) not stopped) =
X

δ∈SD s.t. δ fails against βπ(t)

π(δ) (1)

The adversary’s goal is to compute an adversarial behavior
function that best responds to our probabilistic deployment.
Our goal is to compute a probabilistic deployment that is
most effective against the adversary.
Problem 1 (Adversary): Given probabilistic deployment
π, find an adversarial behavior function β∗ that maximizes

max
t∈T

(P (β∗
π(t) not stopped)) (2)

Problem 2 (Reasoning Agent; Static Asset Protec-
tion Problem): Given any adversarial behavior function
β, find a probabilistic deployment π∗ that minimizes

max
t∈T

(P (βπ∗(t) not stopped)) (3)

π∗ is called an optimal SAP-deployment.

3. COMPUTING OPTIMAL PROBABILIS-
TIC DEPLOYMENTS FOR SAP

We now focus on computing an optimal SAP-deployment.
While this problem has been investigated by Wood [17, 16],
our probabilistic deployment-based approach provides a step-
ping stone to the more complex dynamic problem tackled
later in the paper. We start with a simple observation which
says that we only need to consider acyclic attack paths.

Proposition 1. For every cyclic path p ∈ paths(S, T),
there exists an acyclic path p′ ∈ paths(S,T) such that

P (p′ stopped by π) ≤ P (p stopped by π)

where π is any probabilistic deployment.

From Proposition 1, we see that the set of possible attack
paths is finite, meaning it is possible to compute probabili-
ties for all paths.
Using Minimal Edge Cuts. We now discuss methods
for computing probabilistic deployments that are based on
obtaining edge cuts of a graph.

Definition 4. Let G = (V, E) be a graph, and s, t ∈ V .
We say that C ⊆ E is a local edge cut of G w.r.t. s and t if
and only if there is no path from s to t in G′ = (V, E \ C).
Furthermore, if there is no local edge cut C′ of G such that
|C′| < |C|, we say that C is a minimal local edge cut of G
w.r.t. s and t.

This is a standard definition from graph theory [8] which
is sometimes also called minimum s-t edge cut. We devi-
ate slightly from the usual notion of “minimal”, since we use
cardinality instead of set inclusion. Informally, a probabilis-
tic deployment is edge cut-based iff there is a minimal edge
cut such that every deployment with a non-zero probability
assigns resources to edges in that edge cut.

Definition 5. Let G = (V, E) be a graph, s, t ∈ V ,
and Res be a set of resources. We say that a probabilis-
tic deployment π is edge cut-based w.r.t. s and t if and

300

only if any deployment δ for which π(δ) �= 0 is such that
{e | δ(e) = r for some e ∈ E and r ∈ Res} ⊆ C, for some
minimal local edge cut C w.r.t. s and t in G.

The following result shows that to find a probabilistic de-
ployment that best protects the adversary’s targets, only
edges that belong to minimal edge cuts w.r.t. nodes s ∈ S
and t ∈ T need to be protected.

Theorem 1. Let G = (V, E) be a graph, s, t ∈ V , Res be
a set of resources, and β be an adversarial behavior function.
If the size of a minimal local edge cut w.r.t. s and t is greater
than or equal to |Res |, then for any non-edge cut-based prob-
abilistic deployment π there exists an edge cut-based proba-
bilistic deployment πcut such that

P (β not stopped by πcut) ≤ P (β not stopped by π).

Proof. Let π be a non-edge cut-based probabilistic de-
ployment. Therefore, there exists deployment δ s.t. π(δ) >
0, and Z = {e | δ(e) = r for some e ∈ E and r ∈ Res} �⊆ C,
for all minimal local edge cuts C w.r.t. s and t in G. Let
C be some minimal local edge cut and let edge e ∈ Z be
such that e /∈ C, and consider the path β(π); clearly, since
C is a minimal edge cut w.r.t. s and t, C ∩ β(π) �= ∅.
However, since |C| > |Res |, it must be the case that there
exists some edge e′ ∈ C such that e′ /∈ Z, and therefore
there exists a probabilistic deployment π′ that is identi-
cal to π except that π′(δ) = 0 and π′(δ′) = π(δ), where
δ′(e′) = δ(e) and δ′(e) is null. Note that δ′ is protect-
ing edge e′ whereas δ was not and, since π′ assigns the
probability mass assigned to δ by π to δ′ instead, and δ
fails against β(π) whenever δ′ does (but not necessarily vice
versa), it must be the case that P (β not stopped by π′) ≤
P (β not stopped by π). If we continue doing this until there
are no more edges in Z that do not belong to C, we will have
obtained an edge cut-based probabilistic deployment πcut s.t.
P (β not stopped by πcut) ≤ P (β not stopped by π).

Example 2. We are interested in finding a probability
distribution π that minimizes Equation 3. As Theorem 1
states, all deployments δ s.t. π(δ) > 0 will deploy resources
only along the set of minimal local edge cuts.

e1 e2

e3

e4

e5 e6

e7

s

v0

v1 v2 v3

t
Set of Min s-t Cut Sets

(e1, e3, e4) (e2, e3, e4)
(e1, e3, e5) (e2, e3, e5)
(e1, e3, e6) (e2, e3, e6)
(e1, e3, e7) (e2, e3, e7)

Calculating the set of minimal s − t edge cuts of this exam-
ple is easy. There exist three clear edge-disjoint paths from
source node s to target node t: 〈s, v0, t〉, 〈s, t〉, 〈s, v1, v2, v3, t〉.
The set of minimal edge cuts consists of all combinations of
one edge from each of the three paths. Using this tabulation
of edge cuts, we can form a SAP-optimal distribution over
deployments that place resources on edges in cuts in our set
of local minimal edge cuts.

Theorem 1 says that deploying resources over minimal
edge cuts guarantees that the resulting probabilistic deploy-
ment will be SAP-optimal. However, for graphs that have
more than one minimal edge cut, it says nothing about which
min-cut to use. It turns out that deploying resources over

edges belonging to any single minimal edge cut is sufficient
for optimality. Therefore, similar to Definition 5, we have
the concept of a single edge cut-based probabilistic deploy-
ment, which is based on a single minimal edge cut.

Definition 6. Let G = (V, E) be a graph, s, t ∈ V , and
Res be a set of resources. We say that a probabilistic deploy-
ment π is single-edge cut-based w.r.t. s and t if and only if
there exists a minimal local edge cut C w.r.t. s and t in G
such that any deployment δ for which π(δ) �= 0 is such that
{e | δ(e) = r for some e ∈ E and r ∈ Res} ⊆ C.

We can now prove the following result.

Theorem 2. Let G = (V, E) be a graph, s, t ∈ V , Res
be a set of resources, and β be an adversarial behavior func-
tion. If the size of a minimal local edge cut w.r.t. s and
t is greater than or equal to |Res |, then for any edge cut-
based probabilistic deployment πcut there exists a single-edge
cut-based probabilistic deployment πsingle such that

P (β not stopped by πsingle) = P (β not stopped by πcut).

Proof. Let πcut be a non-single-edge cut-based proba-
bilistic deployment, and C be a minimal edge cut w.r.t. s
and t in G; without loss of generality, we can assume that all
deployments δ for which πcut (δ) > 0 are such that {e | δ(e) =
r for some e ∈ E and r ∈ Res} ⊆ C (let ΔC be the set of
all such deployments), except for one distinguished δ′ /∈ ΔC ,
which is s.t. {e | δ′(e) = r for some e ∈ E and r ∈ Res} ⊆
C′, for some minimal edge cut C′ w.r.t. s and t in G, where
C �= C′. Now, let πsingle be identical to πcut , except that
πsingle (δ

′) = 0, and πsingle(δ
∗) = πcut(δ

′), for some δ∗ ∈ ΔC .
Clearly, since C and C′ are both minimal edge cuts, δ′

fails against β if and only if δ∗ does, and therefore we have
that P (β not stopped by πsingle) = P (β not stopped by πcut).
Since πsingle is a single-edge cut-based probabilistic deploy-
ment, the result follows.

An important consequence of Theorem 2 is that an algo-
rithm for computing an optimal probabilistic deployment
need not compute all possible minimal edge cuts, since de-
ploying resources over any of them exclusively is a sufficient
condition for SAP-optimality.
Equivalence of Deployment- and Edge-Based Strate-
gies. Although the above result significantly reduces the
search space, its worst-case complexity remains exponential
in the number m = |C| of edges in some minimal local edge
cut C and k = |Res|, the number of resources available,
because we must focus on

`
m

k

´
possible deployments. For-

tunately, we do not have to compute all such deployments,
since we can express probabilistic deployments directly as
probability distributions over edges. In the future, we re-
fer to such distributions as edge-based probabilistic deploy-
ments. We now prove that uniform edge-based probabilis-
tic deployments and (conventional) uniform single-edge cut-
based probabilistic deployments are equivalent in terms of
their effectiveness in stopping the adversary; we also show
that uniform edge-based probabilistic deployments can be
computed in polynomial time in the size of the cut.

Theorem 3. Let G = (V, E) be a graph, s, t ∈ V , Res
be a set of resources, C be an arbitrary minimal edge cut,
and πsingle be an optimal uniform single-edge cut-based prob-
abilistic deployment w.r.t. s and t over C. Then, placing re-
sources uniformly at random over edges e ∈ C is equivalent

301

(i.e., yields the same probability in Equation 3) to choosing
a deployment based on πsingle . Furthermore, this edge-based
strategy can be computed in PTIME.

Proof. First of all, note that a non-uniform single-edge
cut-based probabilistic deployment is sub-optimal; we will
sketch the proof of this statement first. The reasoning agent’s
goal is to minimize the maximum probability of a successful
attack against a target, over all targets (Equation 3). Al-
though a non-uniform distribution over all single-edge cut-
based deployments could protect a subset of targets better
than a uniform distribution would (Equation 1), this non-
uniform distribution would potentially increase the probabil-
ity of successful attack against a different subset of targets.
Thus, the maximal probability of successful attack over all
targets would increase.

To show the equivalence, let m = |C|, k = |Res|, and
B =

`
m

k

´
be the number of deployments of k resources over

m edges. We will show that the probability of any resource
being placed on an edge e ∈ C, referred to as Pres(e), is
the same under both edge- and deployment-based strategies.
Using an edge-based probabilistic deployment ξ, we ran-
domly place k resources on m edges. Clearly, Pres(e) = k

m
.

If instead we followed the deployment-based πsingle , we can
compute:

Pres(e) =
X

δ∈SD

πsingle (δ) ·

`
m

k

´
−
`

m−1
k

´`
m

k

´
!

(4)

= B

„
1

B
·

k

m

«
=

k

m
(5)

Note that in Equation 4 above we are summing over B pos-
sible deployments, and that πsingle (δi) = 1

B
is uniformly dis-

tributed. The fractional term in this equation simply rep-
resents the deployments that assign a resource to e out of
all possible deployments over edges in C. The step from
Equation 4 to 5 comes from applying the identity

`
m

k

´
=`

m−1
k−1

´
+
`

m−1
k

´
and simplifying the resulting expression.

As both strategies guarantee identical coverage of all edges
in C, they provide identical protection of our target set
T . Furthermore, as the edge-based strategy must only ran-
domly choose some k-subset of C, it can be computed in
time in O(|C|).

The above result yields a PTIME algorithm (shown in Fig-
ure 1) to compute a SAP-optimal deployment. It is well
known that finding (minimal or otherwise) local edge cuts
w.r.t. s and t can be accomplished by running the Edmonds-
Karp [4] algorithm and selecting minimal sets (w.r.t. set in-
clusion) of vertices reachable from s in the final residual
graph. The Edmonds-Karp algorithm has a running time
in O(|V | · |E|2). Other related methods, like Dinic’s algo-
rithm [7], offer better performance (O(|V |2 · |E|) or better).
Though these algorithms apply to directed graphs, we can
apply them to the SAP problem by replacing each undi-
rected edge with two oppositely facing directed edges [6].
The result below states that this algorithm is correct.

Proposition 2. ComputeEdgeBasedDeployment (Fig. 1)
correctly computes a SAP-optimal probabilistic deployment.

Proof. Sketch. Theorem 3 proves that randomly placing
resources over a minimal s-t edge cut is equivalent to ran-
domly choosing a deployment based on πsingle , a single-edge

algorithm ComputeEdgeBasedDeployment(G = (V, E), s, t)

1. C := any minimal edge cut from s to t in G;

2. Let ξ be a probability distribution over E;

3. Set ξ(e) = 0 for all e ∈ E;

4. Set ξ(e) = 1
|C|

for all e ∈ C;

5. Return ξ;

Figure 1: Computing edge-based deployments.

cut-based probabilistic deployment. Theorem 2 shows an
equivalence between πsingle and the more general edge cut-
based probabilistic deployment πcut . Finally, Theorem 1
shows that it is never better to choose some generic proba-
bilistic deployment π over the cut-based πcut .

Theorem 3 and Proposition 2 show that ComputeEdge-
BasedDeployment (Figure 1) computes a SAP-optimal de-
ployment in polynomial time.

4. PROTECTING A MOVING TARGET
Suppose a politician is participating in a widely adver-

tised parade from location A to B. What is the safest parade
route, i.e., the route that would provide the most effective
protection, given that the actual route is known to adver-
saries in advance? We need a mechanism to select a path
between his origin and the destination, and a probabilistic
deployment of resources such that the chance of an adver-
sary successfully attacking along the path is minimized.

Definition 7. Given a graph G = (V, E), set of adver-
sarial source nodes S ⊆ V , and target nodes ts, te ∈ (V \S),
a route r is a simple path 〈ts, t0, . . . , tk, te〉 from ts to te,
with ti /∈ S. Furthermore, we define the set of targets w.r.t.
this route as Tr = {ts, t0, . . . , tk, te}.

Intuitively, this means that every node on the route from a
starting position ts to a desired ending point te is considered
a potential target for attack. Given a route r from ts to te,
Figure 1 gives us a PTIME algorithm to compute an optimal
probabilistic deployment πr to protect the set of targets Tr.
Dynamic Asset Protection (DAP) Problem: Given ts
and te, select route r∗ such that

r∗ = argmin
r∈routes(ts,te)

P (βπr not stopped) (6)

where routes (ts, te) is the set of all routes from ts to te, πr is
the optimal probabilistic solution w.r.t. Tr for a route r, and
βπr is an optimal adversarial strategy against πr calculated
by maximizing Equation 2. Note that Algorithm 1 allows us
to calculate πr before calculating βπr . We now extend the
SAP algorithms developed in the last section to a solution
for the DAP problem using minimal edge cuts.

Proposition 3. Calculating a route r∗ (called a DAP-
optimal route) such that

r∗ = argmin
r∈routes(ts,te)

|Cr|

where Cr is the minimal S − Tr edge cut is equivalent1 to
calculating the optimal route rbest using Equation 6.
1i.e., r∗’s probability of stopping βπr is the same whether
computed using Equation 5 or using the above formula

302

Proof. Assume that route r∗ is not DAP-optimal, with
a = |Cr∗ |. Then there is an optimal route rbest such that
b = |Crbest

| and b > a. Let R = |Res|, and πr∗ and πrbest
be

the optimal probabilistic deployments computed for each of
these routes, respectively. Then the probability of an edge e
in the cut Cr∗ being covered by πr∗ is R

a
, while the probabil-

ity of an edge e′ in the cut Crbest
being covered by πrbest

is R
b
.

Recall b > a, so R
b

< R
a
; that is, πrbest

provides worse edge
cut coverage than πr∗ . This contradicts our assumption of
the optimality of route rbest.

Proposition 3 shows that the problem of finding a DAP-
optimal route r is equivalent to finding a route r′ such that
the size of the minimal S − Tr′ -edge cut is minimized over
all routes in routes (ts, te). We now show that the decision
version of this problem is NP -complete.

Proposition 4. Let G = (V, E) be a graph, ts, te ∈ V ,
S ⊆ V , and k ∈ N. Deciding if there exists a route r ∈
routes (ts, te) such that the size of a minimal S−Tr edge cut
is k is NP -complete.

Proof. Membership in NP: Clearly, given a route r ∈
routes (ts, te), we can verify in polynomial time if the size
of a minimal edge cut is k or not by means of a max-flow
algorithm such as Edmonds-Karp.
NP-hardness: We shall reduce the SUBSET-SUM (SS) prob-
lem with positive integers to our problem in polynomial time
in order to prove NP -hardness. This problem involves de-
ciding, given a set P = {p1, . . . , pn} of positive integers and
an integer c, if there exists P ′ ⊆ P such that

P
pi∈P ′ pi = c.

Given an instance of SS, we must then provide an instance
of our problem such that its solution provides an answer to
SS for the original instance if and only if one exists.

Assume then that we have an instance of SS as described
above. Construct a graph G = (V, E) as shown in Figure 2;
we have two nodes in V for each pi ∈ P (we will refer to
these as pair nodes, and to each one in particular as bottom
and top), and three more nodes ts, te, and s. Furthermore,
we have

P
pi∈P

pi more nodes, arranged as in the figure,
so that a set of pi nodes corresponds to the pair nodes as-
sociated with pi; we shall call this last set of nodes “gad-
get nodes”. The total number of nodes in V is therefore
2n + 3 +

P
pi∈P

pi. Next, we add edges from ts to the first
pair nodes, from the last pair nodes to te, and from each
remaining pair node to the two pair nodes on its right. Fi-
nally, we add an edge from s to each gadget node, and from
each gadget node to the bottom node of its corresponding
pair. This yields a total of 4n + 2 ·

P
pi∈P

pi edges. We will
now show that a solution exists for the instance of SS if and
only if G has a route r such that the size of a minimal s−Tr

edge cut is c + 3n − 2.
(⇒) Suppose there exists a solution P ′ = {p′

1, . . . , p
′
k} to

the SS instance, which means that
P

p′

i
∈P ′ p′

i = c. Con-

sider then the route r = {ts, . . . , ui, . . . , te}, where ui cor-
responds to the bottom node in each pair if pi ∈ P ′ and
to the top node if pi /∈ P ′. Let Cr be a minimal s − Tr

edge cut. Clearly, removing the minimal number of edges
from G such that s and Tr are disconnected can be accom-
plished by removing, for each node ui /∈ {ts, te}, the four
edges that connect them to the previous and the following
pair nodes (these are actually three for the first and last
nodes) and, in the case of bottom nodes in the route, all
p′

i edges connecting to gadget nodes as well. Intuitively, all

ts te

S

p1 p2 pn

Figure 2: Graph used in the proof of Proposition 4

nodes add four edges to the cut, except the first and last
which add three, and each bottom node in the route adds
p′

i more edges. However, this reasoning is double counting
edges; looking closely, we see that each pair node actually
adds three edges (the one not added by the previous pair,
plus the two connecting to the pair on the right), except for
the last one, which adds only one. This brings the total size

of the cut to
“P

p′

i
∈P ′ p′

i

”
+ 3(n − 1) + 1 = c + 3n − 2.

(⇐) Suppose there exists a route r with the above charac-
teristics; by hypothesis, the minimal s−Tr edge cut is of size
c + 3n − 2. If we take the set of nodes in r that are bottom
nodes in a pair, we can see that the sum of incoming edges
from gadget nodes is exactly c. Therefore, the correspond-
ing solution to SS consists of the integers p′

i corresponding
to such pairs in the construction of G.

Since the reduction can be performed in polynomial time,
we have proved that the problem is NP -hard.

As this result shows that computing DAP-optimal routes
is intractable,2 we wondered if there are PTIME approxima-
tion algorithms for DAP; unfortunately, the answer is “no”.
The proof first requires a lemma.

Lemma 1. Let G = (V, E) be a graph, ts, te ∈ V , S ⊆ V ,
and r ∈ routes(ts, te) be an optimal route. Then, we have:

1. There exists a {ts, te}–S edge cut C∗ such that |C∗| =
|C|, and ts, te belong to the same connected component
in G′ = (V, E \ C∗).

2. Let Cs-e be a minimal {ts, te}–S edge cut; then, |Cs-e| ≤
|C| ≤

P
s∈S

degree(s).

Proof. The proof of the first part follows directly from
the definition of minimal edge cut and the problem state-
ment. For the second part, consider the first inequality.
Clearly, since C is a minimal Tr–S edge cut and {ts, te} ⊆ Tr,
the inequality holds. For the second one, it is sufficient to
note that no cut can be larger than the set of edges that
isolates all s ∈ S.

The above Lemma shows that DAP is closely related to
the problem of dividing the set of vertices of a graph into
two disconnected sets of a certain size while removing the

2Note that this result can easily be extended to planar
graphs by replacing each pair of crossing edges in Figure 2
with a node at the crossing point and four corresponding
edges. The proof can then be modified to contemplate this
new graph, meaning that even for the more restricted class
of planar graphs the problem remains NP -complete.

303

minimum possible number of edges. This problem is NP -
complete [11] — furthermore, Bui and Jones [3] show that
approximating either edge or vertex separations on a gen-
eral graph is intractable. Specifically, given an optimal edge
separator C, finding an approximate solution C′ such that
|C′| ≤ |C| + |V |2−ε, with ε > 0, is NP -hard. As DAP is
closely related to this problem, we can prove that any good
approximation algorithm will also be intractable. In the fol-
lowing, we refer to the problem of finding a partition P of
size k such that te is reachable from ts in P by means of
a path pk ∈ P and such that the minimal edge cut associ-
ated with P is the smallest among all such partitions as the
“k-DAP problem”.

Theorem 4. Let G = (V, E) be a graph, ts, te ∈ V , S ⊆
V , and k ∈ N. Given an optimal edge cut C for the k-
DAP problem, finding an approximate solution C′ such that
|C′| ≤ |C| + |V |2−ε, with ε > 0, is NP -hard.

Proof. Suppose towards a contradiction that there ex-
ists an approximation algorithm that obtains a good approx-
imation (as stated in the theorem) for the k-DAP problem.
In this case, let G′ = (V, E ∪ (ts, te)) be the graph obtained
from G by adding an edge from ts to te (if this edge was
already there, then G = G′). Now, an edge cut C∗ satis-
fies the conditions in the theorem for the k-DAP problem
over G′ if and only if C∗ satisfies those same conditions for
the constrained optimal k-partition problem over G (where
the constraints state that ts and te must belong to the same
partition) since the existence of the path is guaranteed by
the additional edge. This is a contradiction, since it was
proved [3] that such an approximation cannot exist. The
contradiction stemmed from assuming the existence of an
approximation algorithm that obtains solutions satisfying
the conditions, and thus no such algorithm exists.

algorithm GreedyDAP(G = (V, E), ts, te, S)

1. Starting at te, perform BFS to calculate

shortest distance from all v ∈ V to te;

2. Define heuristic functions g, h : V → N;

3. For each vertex v in V do

4. g(v) := degree(v);

5. h(v) := d(v, te), shortest distance from v to te;

6. Let r := A∗(ts, te), the route returned

by A∗ using functions g, h;

7. Let C be any minimal edge cut from S to Tr in G;

8. Return {r, C};

Figure 3: The GreedyDAP Algorithm

Greedy DAP Algorithm. Figure 3 presents a greedy
DAP algorithm based on intuitions from Lemma 1. The
heart of the algorithm is the execution of the A* algorithm
[10] using specific cost and distance functions. For a vertex
v, the path-cost function is based on degree(v), while the
admissible heuristic estimate of the distance from v to end-
ing target te is computed via a one-time breadth-first search
(BFS). Computing this path-cost function is in PTIME; fur-
thermore, as A* expands each vertex at most once, the entire
search runs in PTIME. A* returns a suggested ts, te-route
r, so the minimal S − Tr-edge cut can be computed using
the Edmonds-Karp min cut algorithm. As the PTIME op-

�
��������	
��������

�

�

�

��
��

��������	
��������

��

��	��

� ���

	

�

�

�

��
��

��
��

��
�

��������	
��������

��

��	��

�����

�

�

	

�

�

�

�

��
��

�
��

��
��

��
��

�

��������	
��������

��

��	��

�����

�

�

�

	

�

�

�

��
��

�
��

�

�

��
��

��
��

��
�

��������	
��������

��

��	��

�����

�

�

�

�

	

�

�

�

��
��

�
��

�

�

��
��

��
��

��
�

��������	
��������

��

��	��

�����

�

�

�

�

	

�

�

�

��
��

�
��

�

�

��
��

��
��

��
�

�����

��������	
��������

��

��	��

�����

�

�

�

�

	

�

�

�

��
��

�
��

�

�

��
��

��
��

��
�

�����

��������	
��������

��

��	��

�����

Figure 4: Running times of the algorithm for the
static problem for different #sources and #targets
as percentages of |V |.

erations of A*, BFS, and Edmonds-Karp are executed once,
the greedy algorithm shown in Figure 3 is also in PTIME.

5. EXPERIMENTAL RESULTS
We conducted experiments using a prototype Java imple-

mentation consisting of roughly 2,100 lines of code, relying
on the JGraphT3 library for operations on graphs. All ex-
periments were run on multiple multi-core Intel Xeon E5345
processors at 2.33GHz, 8GB of memory, running the Scien-
tific Linux distribution of the GNU/Linux operating system,
kernel version 2.6.9-55.0.2.ELsmp. We note that this imple-
mentation makes use of only one processor and one core. All
runs were performed over graphs corresponding to real road
networks [12]. In order to obtain graphs of a given size,
a seed node was randomly chosen, and neighbors progres-
sively added until the desired number of nodes was reached.
The average degree of nodes in the graphs used was approx-
imately 2.45, which means that the number of edges was
less than twice the number of nodes. Finally, all graphs plot
average values over 20 to 100 runs, in order to minimize
experimental error.
SAP Running Time. The first experiment focuses on
comparing the running time (cf. Figure 4) of our SAP algo-
rithm as we vary the number of vertices in the road network
and we vary the percentage of source/target vertices in the
graph. Three curves are plotted, each corresponding to dif-
ferent amounts of randomly selected source and target nodes
as percentages of the total set of vertices (0.1%, 0.5%, and
1%). For instance, the full line corresponds to the case in
which 1% of the nodes were randomly chosen as sources,
another 1% were chosen as targets, and the remaining 98%
were regular vertices. We can see that the number of source
and target nodes greatly affects the running time of the al-
gorithm, which is a natural consequence of the fact that the
larger these sets are, the more augmenting paths will be
involved in the necessary maximum flow computations.
DAP Problem: Efficiency of GreedyDAP. Figure 5
shows a comparison of the running times of a brute force
algorithm and GreedyDAP. Clearly, the brute force solution
does not scale well as it took more than three minutes for
a graph of 60 nodes, with 2 sources and 2 targets. These
runs allowed us to compare the accuracy of GreedyDAP
computed as relative error w.r.t. the size of the cuts found

3http://jgrapht.sourceforge.net/

304

�

��

���

��

���

�
�

���

��

�
��

�

�

��
��

��
��

��
�

�������������������������
��
�����	
��������

�����������

���������

�

�

��

�

��

���

��

���

�
�

���

��

�� �	 � 	 �� �	 �� �	 	� 		
�

��
��

�
��

�

�

��
��

��
��

��
�

�����

�������������������������
��
�����	
��������

�����������

���������

Figure 5: Comparison of running
times of the brute force and the
heuristic algorithms as #nodes is
varied.

����

����	

���

���	

��
 �

�

��
�!

��
��

�������������������������
��
�����	
��������

�

����	

����

����	

���

���	

�� �	 � 	 �� �	 �� �	 	� 		
�

��
 �

�

��
�!

��
��

�����

�������������������������
��
�����	
��������

Figure 6: A plot of the relative er-
ror in the size of the cuts found by
the heuristic algorithm compared
to those found by brute force.

��

�	

�

	

�
��

�

�

��
��

��
��

��
�

���������
��
�����	
��������

	�

���

�	�

�

	

��

�	

�

	

��
��

�
��

�

�

��
��

��
��

��
�

�����

���������
��
�����	
��������

	�

���

�	�

Figure 7: Running time of the
heuristic algorithm as #nodes
takes larger values than in Fig-
ure 5.

���

���

��	

��

���

���

���

�

�

"�
���

�#
�$

��
�

%
�&

'�
��

��

���������
��
�����	
��������

	�

���

�	�

�

���

��

���

���

��	

��

���

���

���

�

��
 �

�

��
�(

��
��

"
��

��
�#
�$

��
�

%
�&

'�
��

��

�����

���������
��
�����	
��������

	�

���

�	�

Figure 8: A plot of the cut sizes
found by the heuristic algorithm
relative to the upper bound cut
size (lower is better).

�

��	

�	

��

�

���

�

��
��

��
��

��
�

���������
��
�����	
����)������������

�

��	

�

��	

�	

�� � �� �� 	�
� �� �� �� ��
�

��
�

�
�

��
�

��
�

�	
�

�

�

��
�

��
�

��
��

�
���

�
��

��
��

��
��

�

�)�������������������

���������
��
�����	
����)������������

Figure 9: Running time of the
heuristic algorithm as the length
of the shortest parade route is
varied.

���

���

��	

��

���

���

���

�

��
��

"
��

��
�#
�$

��
�

%
�&

'�
��

��

���������
��
�����	
����)������������

�

���

��

���

���

��	

��

���

���

���

�

�� � �� �� 	�
� �� �� �� ��
�

��
�

�
�

��
�

��
�

�	
�

�

�

��
�

��
�

��
 �

�

��
�(

��
��

"
��

��
�#
�$

��
�

%
�&

'�
��

��

�)�������������������

���������
��
�����	
����)������������

Figure 10: Relative cut sizes
found by the heuristic algorithm
(as in Figure 8), as length of
shortest parade route varies.

(absolute value of the difference divided by size of the cut
found by brute force). For these runs, the error associated
with GreedyDAP was at most 0.02, as shown in Figure 6.
DAP Problem: Scalability of GreedyDAP. Figure 7
analyzes the scalability of the GreedyDAP algorithm for
larger graphs; in this and the remaining experiments, the
number of sources was kept fixed at 20. We plotted three
curves simultaneously in this figure, which differ only in the
length of the minimum route (50, 100, and 150). As ex-
pected, the running time is affected by the length of the
shortest route as the search space for the heuristic algo-
rithm is made larger. Furthermore, we see that the running
times all have an inflection point at 140K nodes, but still re-
main between 15 and 23 seconds even for 170K nodes. This
can be explained by recalling that the heuristic algorithm
computes the shortest route at each iteration, an operation
that for the graphs used here takes time in (|V |). Figure 8
also reports runs in which the number of nodes was varied,
but plots the relative cut sizes found by GreedyDAP instead
(also for three different shortest parade route lengths). Rel-
ative cut sizes were computed as the size of the cut found
by the algorithm divided by the upper bound on such size
obtained by computing a minimal S−{V \S} edge cut (i.e.,
isolating all the source nodes from the rest of the graph).
We again see that performance worsens as the length of the
shortest parade route becomes longer; this is due to the fact
that the number of targets (intermediate nodes) that must
be protected becomes larger. Surprisingly, performance be-
comes better as the number of nodes becomes larger; an
explanation of this behavior is that the number of sources
was kept constant and thus the parade represents a smaller

portion of the graph.
DAP Problem: Performance of GreedyDAP with
Increasing Route Length. Finally, the two remaining
figures correspond to experiments in which the number of
nodes was fixed at 40K, and the length of the shortest route
was varied. Figure 9 plots the time taken by the GreedyDAP
algorithm to compute a solution as this length increases; in
accordance with the results showed in Figure 4 and 7, it is
more costly to compute a solution the longer the minimum
route is since more targets must be protected; however, even
for routes of length 180, the time taken to find a route was
just over 2 seconds. In Figure 10, we plot relative cut size as
a function of length of the shortest route. Quite interesting
is the fact that the quality of the results returned by the
heuristic algorithm decays quite gradually, and is fairly good
even for relatively long route lengths such as 100, where it
found on average a cut with a relative size w.r.t. the upper
bound of little over 0.6. This decay is explained by the
fact that, as route length increases, the algorithm has more
chances of making sub-optimal choices.

6. RELATED WORK
In the past, there has been considerable interest in both

interdicting a network [5, 16, 17] and protecting a set of
targets [1, 2, 14, 15, 13]. While all of these papers discuss
problems that can be compared to SAP, they are different
in three major respects: none of them use deployment-based
strategies like we do, all of them use the notion of “turns”
for different players (this is not part of the problems we
address), and none of them address the DAP problem. We

305

now consider these papers in turn.
In deterministic network interdiction, an enemy attempts

to maximize flow across a directed network while an interdic-
tor minimizes this maximum flow by blocking edges. Wood
shows that a generalized version of SAP (as a network in-
terdiction problem with weighted edges and resources) is
NP-complete [17]. In [16], a problem equivalent to SAP is
given in matrix game form and shown to be solvable in poly-
nomial time. [5] addresses a stochastic interdiction problem
similar to SAP where successful edge interdiction is modeled
as a random variable, but does not give a PTIME solution.

[1] and [2] consider the problem of detecting penetrations
across the path(s) of patrolling robots. These robots apply
a non-deterministic patrol scheme such that their movement
is characterized by a probability p. [1] presents an optimal
polynomial time algorithm for finding this p such that the
minimal probability of penetration detection across the path
is maximized, assuming the agent has full knowledge of the
environment and the robot’s strategy. [2] extends this model
by considering adversaries with different knowledge.

[13] assumes knowledge of the adversary’s behavior is ac-
commodated by manipulating a probability distribution over
states, indicating probability of that state being targeted.
They discuss randomizing an MDP (or POMDP) policy in
order to avoid being modeled by an opponent, while main-
taining an expected reward above a certain threshold. Even
though this approach could be used to solve SAP or DAP,
expressing these problems in terms of MDPs would be highly
inefficient because of the exponential number of states used.
No graph structures are considered and randomization is
over the space of MDP policies, not edge cuts.

[14] proposes models based on bounded rationality, which
assumes that the follower agents will choose a strategy that
is within some epsilon of the actual best, and observabil-
ity limitations, in which the follower is assumed to start
out with no knowledge of the desired distribution and thus
begins with a uniform distribution (inspired by human be-
havior), which is thereafter updated slowly given observa-
tions (this is called Anchoring Theory). The authors solve
Stackelberg games (in general) under the assumption of sub-
optimal adversaries. As in the previous case, SAP or DAP
could in theory be solved by this approach, but the number
of possible actions would make this game-theoretic approach
intractable. Finally, [15] is also based on Stackelberg games,
where the opponent is assumed to be rational. The main
problem is to solve the game for the defender, for the spe-
cial case of “transportation networks” (basically protecting
commercial flights). The same discussion as for the previous
paper applies w.r.t. SAP and DAP.

7. CONCLUSIONS
In this paper, we study the static asset protection (SAP)

problem first and show that optimally protecting static as-
sets with a given set of resources can be best done by first
selecting a minimal cut of the graph and then randomizing
where our protective resources are placed along edges in the
min-cut. We show that this algorithm performs very well in
practice on real world road network data.

We then introduce the dynamic asset protection (DAP)
problem to protect moving assets whose routes are known in
advance. Given a set of resources, what parade route should
be picked (to afford the best degree of protection) and how
best should we protect this route? We show that the DAP

problem is not only NP-complete, but approximating it is
also NP-hard. As a consequence, we develop a heuristic
algorithm called GreedyDAP and show experimentally that
it performs well in practice on real world road data.
Acknowledgments. This research is supported by AFOSR
Grant #FA95500610405, ARO Grant #W911NF0910206,
ONR Grant #N000140910685, NSF Grant #0705587 and
ISF Grant #1685.

8. REFERENCES
[1] N. Agmon, S. Kraus, and G. Kaminka. Multi-robot

perimeter patrol in adversarial settings. In Proc. of
ICRA, pages 2339–2345, 2008.

[2] N. Agmon, S. Kraus, G. Kaminka, and V. Sadov.
Adversarial Uncertainty in Multi-Robot Patrol. In
Proc. of IJCAI, pages 1811–1817, 2009.

[3] T. Bui and C. Jones. Finding good approximate
vertex and edge partitions is NP-hard. Information
Processing Letters, 42(3):153–159, 1992.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, September 2001.

[5] K. Cormican, D. Morton, and R. Wood. Stochastic
network interdiction. Operations Research,
46(2):184–197, 1998.

[6] G. Dantzig. On the max flow min cut theorem of
networks, page 227. Stanford University Press, 2003.

[7] E. Dinitz. Algorithm for solution of a problem of
maximum flow in networks with power estimation.
Soviet Math. Dokl, 11(2–4):1277–1280, 1970.

[8] A. Gibbons. Algorithmic graph theory. Cambridge
University Press, Cambridge, New York, 1985.

[9] T. Harris and F. Ross. Fundamentals of a method for
evaluating rail net capacities. Technical Report
AD0093458, RAND Corporation, October 1955.

[10] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[11] R. Karp. Reducibility among combinatorial problems.
In Complexity of Computer Computations, pages
85–103. Plenum Press, 1972.

[12] F. Li and G. Kollios. Real Datasets for Spatial
Databases: Road Networks & Points of Interest, 2005.

[13] P. Paruchuri, M. Tambe, F. Ordóñez, and S. Kraus.
Security in multiagent systems by policy
randomization. In Proc. of AAMAS, 2006.

[14] J. Pita, M. Jain, M. Tambe, F. Ordonez, S. Kraus,
and R. Magori-Cohen. Effective solutions for
real-world stackelberg games: When agents must deal
with human uncertainties. In Proc. of AAMAS, 2009.

[15] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and
M. Tambe. IRIS-A Tool for Strategic Security
Allocation in Transportation Networks. In Proc. of
AAMAS, pages 37–44, 2009.

[16] A. Washburn and K. Wood. Two-person zero-sum
games for network interdiction. Operations Research,
pages 243–251, 1995.

[17] R. Wood. Deterministic network interdiction. Math.
and Comp. Modelling, 17(2):1–18, 1993.

306

